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Scientific machine learning

Observational bias Inductive bias Learning bias

Domain-aware physical principles & symmetries
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Interpretable

explainable & understandable results

exploiting structure in high-dim data Physics-informed machine learning

uncertainty quantification + ML

Robust probabilistic modeling in ML

stable, well-posed & quantifying well-posedness

reliable formulations reliable hyperparameter estimation

[Baker et al., DOE Tech. Report, 2019]

Symmetry Conservation laws Dynamics

[Karniadakis et al., 2021]

Combining numerical analysis and machine learning for scientific discoveries.



Recent applications of SciML

Weather forecasting Protein folding

[Lam et al., Science, 2023] [Jumper et al., Nature, 2021]

Numerical simulations Materials discovery

Li,MgGe,S, Mo _GeB,

[Raissi, Yazdani, Karniadakis, Science, 2020] [Merchant et al., Nature, 2023]



Operator learning

Physics-informed machine learning

George Em Karniadakis® 2%, loannis G. Kevrekidis>*, Lu Lu®?®, Paris Perdikaris®,
Sifan Wang” and Liu Yang®'

Abstract | Despite great progress in simulating multiphysics problems using the numerical
discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy
data into existing algorithms, mesh generation remains complex, and high-dimensional problems
governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with
hidden physics is often prohibitively expensive and requires different formulations and elaborate
computer codes. Machine learning has emerged as a promising alternative, but training deep neural
networks requires big data, not always available for scientific problems. Instead, such networks can
be trained from additional information obtained by enforcing the physical laws (for example, at
random points in the continuous space-time domain). Such physics-informed learning integrates
(noisy) data and mathematical models, and implements them through neural networks or other
kernel-based regression networks. Moreover, it may be possible to design specialized network
architectures that automatically satisfy some of the physical invariants for better accuracy, faster
training and improved generalization. Here, we review some of the prevailing trends in embedding
physics into machine learning, present some of the current capabilities and limitations and discuss
diverse applications of physics-informed learning both for forward and inverse problems, including
discovering hidden physics and tackling high-dimensional problems.

[Cai et al., 2021]

PDE Discovery

Inverse Problem
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Forward Problem

PDE Solvers

4

Some data Lots of data
Some physics No physics

Operator Learning

Small data
Lots of physics

Recent survey: B., Townsend, “A Mathematical Guide to Operator Learning”, 2023.
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Introduction

Aim: Learn the solution operator of unknown linear PDEs E(u) — f
from observation data:
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Main contributions:

* Theoretical result quantifying the number of training pairs (f, u) needed

« A practical deep learning approach to learn Green’s functions



Introduction

Aim: Learn the solution operator of unknown linear PDEs E(u) — f
from observation data:
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Key ideas:

* Randomized numerical linear algebra * Regularity of Green’s functions

 Rational neural networks



Standard approaches of PDE learning

Approximating the solution operator £~ 1(f) = u
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Standard approaches of PDE learning

Approximating the solution operator £~ ! (f) =

[Quanta Magazine; Lu et al, 2021]
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Main challenges of PDE learning

1. Theoretical results
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Main challenges of PDE learning

1. Theoretical results
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Main challenges of PDE learning

1. Theoretical results
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PDE learning is data-efficient

Learn the solution operator of Poisson equation Random source Solution
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Related works: [B., Townsend, 2022], [B. et al., 2022], [Chen et al., 2023], [de Hoop et al., 2021], [Lu et al., 2021], [Schafer, Owhadi, 2021],
[Schéafer et al., 2017]




Green’s functions

Linear differential equation:

Lu=f

ugp =0

— u(z) = /D G(z,9)f (y) dy
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Green’s functions

Linear differential equation:

Lu=f

ugp =0
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Green’s functions

Linear differential equation:

Lu =
g —— U(T) = / G(z,y)f(y)dy
— D
u‘@D George Green
Poisson equation Helmholtz equation
V2u=f o I Viu+ku=f .
u(0) = u(1) =0 - o I w(0) =u(l)



Learning Green’s functions of elliptic PDEs

Elliptic PDEs in 3D of the form:
Lui=—V- (A@)Va) = f —— u(e) = [ Gla)fw)dy

Theorem (B., Halikias, Townsend, 2023).

There is a randomized algorithm that achieves exponential convergence for learning
the Green’s function, with exceptionally high probability of success.

The proof combines core techniques in numerical analysis and generalizes
them to infinite dimensions: randomized SVD + hierarchical matrices + peeling.

B., Halikias, Townsend, “Elliptic PDE learning is provably data-efficient”, PNAS, 2023.



Randomized numerical linear algebra




Randomized singular value decomposition

Best rank k approximation

Z V* Eckart-Y th -
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Randomized singular value decomposition

Best rank k approximation

A = [J \ Eckart-Young theorem € — i o, (A)2
\ j=k+1

Theorem (Halko, Martinsson, Tropp, 2011).

We can construct an approximation A, of A from k+5
random input vectors such that

P [HA ~ Agllr < (1+15vVE + 5)64 > 0.999




Randomized singular value decomposition

Eckart-Young theorem

Theorem (Halko, Martinsson, Tropp, 2011).

We can construct an approximation A, of A from k+5
random input vectors such that

P [HA ~ Agllr < (1+15vVE + 5)64 > 0.999
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Generalization of the randomized SVD

Standard Gaussian vectors Correlated Gaussian vectors
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Generalization of the randomized SVD

Standard Gaussian vectors Correlated Gaussian vectors
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Theorem (B., Townsend, 2022).

We can construct an approximation A4, of A from k+5 correlated
random input vectors such that

P (|4 - Agllr < (14 9vVE(k +5)8%/ve)er| > 0.999




Generalization of the randomized SVD

Standard Gaussian vectors Correlated Gaussian vectors

\

[B Townsend, 2022]

I [
= Randomized SVD
= PTrior covariance
2.5 = Best approximation |

Theorem (B., Townsend, 2022).

We can construct an approximation A4, of A from k+5 correlated
random input vectors such that

P (|4 - Agllr < (14 9vVE(k +5)8%/ve)er| > 0.999

Error / Best approximation error

0 500 1,000 1,500 2,000

Number of samples

Prior knowledge on A

v




Hilbert-Schmidt operators

Definition:

Bounded linear operator .% between Banach
spaces with finite HS norm.
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Bounded linear operator .% between Banach
spaces with finite HS norm.
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Hilbert-Schmidt operators

Definition:

Bounded linear operator .% between Banach
spaces with finite HS norm.

Matrices
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Properties of Hilbert-Schmidt operators

Norm

|F |lus = [|Gll2(px D)



Properties of Hilbert-Schmidt operators

Norm Sinqular value decomposition

|-Zlus = |Gl L2(px D)
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Properties of Hilbert-Schmidt operators

Norm

|-Zlus = |Gl L2(px D)
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Randomized SVD for HS operators

AXF
0.7 0.1 [B., Townsend, 2022]
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Randomized SVD for HS operators

AxF

0.7 0.1 [B., Townsend, 2022]
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Randomized SVD for HS operators

AxF
G(z,y)f(y)dy
0.7 0.1 [B., Townsend, 2022] D
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Randomized SVD for HS operators
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Randomized SVD for Green’s functions

Green’s function

0.25 Theorem (B., Townsend, 2022).
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Randomized SVD for Green’s functions

Green’s function
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Theorem (B., Townsend, 2022).

We can construct an approximation G, of ¢ from k+5
random input functions f such that

P [||G Gyl <O (M) ek] > 0.999

Problem:

The Green’s functions are not smooth

near the diagonal.




Randomized SVD for Green’s functions

Green’s function

0.25 Theorem (B., Townsend, 2022).

0.20 L
We can construct an approximation G, of ¢ from k+5
/ r Sallo random input functions f such that
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Regularity of the Green’s function




| ow-rank structure

A4
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Low-rank structure on well

separated domains.
[Bebendorf, Hackbush, 2003]
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Hierarchical reconstruction

G(z,y) ~ Y gi(x)h;(y)

j=1




Hierarchical reconstruction

Randomized SVD on each subdomain

Z 0j(Glxxy)* <€




Hierarchical reconstruction

Randomized SVD on each subdomain
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Off-diagonal decay

Green’s function of the Laplace
operator:

—Vu=f
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Off-diagonal decay

Green’s function of the Laplace Green’s functions are smooth and
operator: decay off the diagonal. [Griter, widman, 1982]
—Vu=f Cla.y) < 1

X
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Off-diagonal decay

Green’s function of the Laplace Green’s functions are smooth and
operator: decay off the diagonal. [Griter, widman, 1982]
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B Glz.y) < 2
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Summary of the result

Theorem (B., Halikias, Townsend, 2023).

There is a randomized algorithm that achieves exponential convergence for learning
the Green’s function, with exceptionally high probability of success.

Randomized SVD Hierarchical structure

Level 2 Level 3 Level 4

/D Gz, y)f(y) dy
il




Summary of the result

Theorem (B., Halikias, Townsend, 2023).

There is a randomized algorithm that achieves exponential convergence for learning
the Green’s function, with exceptionally high probability of success.

Extension to time-dependent PDEs of the form:

u — V- (A(z,t)Vu) = f(x,t)

B., Kim, Shi, Townsend, “Learning Green's functions associated with time-dependent partial differential equations”, J. Mach. Learn. Res., 2022.



Deep learning applications




Deep learning method

A GP covariance kernel
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Learning features of the PDE

Learned Green'’s function
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Learning features of the PDE

Learned Green’s function Symmetries
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Learning features of the PDE
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Learning features of the PDE

Learned Green’s function Symmetries Dominant eigenvalues
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Rational neural networks have high approximation power and support
feature extraction [s., Nakatsukasa, Townsend, 2020]



Advection-diffusion equation

Equation:

d?u du
Lu =0 ld:r;2 (x > 0) T




Advection-diffusion equation

Equation:

d*u du
Lu = O.lda72 F (x> 0)— u(—1) =2, wu(l)=-1

Green’s function Homogeneous solution Phase portrait
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Stokes flow in a lid-driven cavity

Exact velocity




Stokes flow in a lid-driven cavity
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Conclusions

1. Theory for learning Green'’s functions
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Conclusions

1. Theory for learning Green'’s functions
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2. Generalization of the randomized SVD
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3. Deep learning approach
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