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Scientific machine learning

[Baker et al., DOE Tech. Report, 2019]

Combining numerical analysis and machine learning for scientific discoveries.

[Karniadakis et al., 2021]



Recent applications of SciML

Weather forecasting

[Lam et al., Science, 2023]

Protein folding

[Jumper et al., Nature, 2021]

[Raissi, Yazdani, Karniadakis, Science, 2020]

Numerical simulations Materials discovery

[Merchant et al., Nature, 2023]



Operator learning

[Cai et al., 2021] Recent survey: B., Townsend, ‘‘A Mathematical Guide to Operator Learning’’, 2023.



Introduction

Learn

Aim: Learn the solution operator of unknown linear PDEs                      

from observation data:



Introduction

Learn

Main contributions:

• Theoretical result quantifying the number of training pairs             needed

• A practical deep learning approach to learn Green’s functions
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from observation data:



Introduction

Learn

Key ideas:

• Randomized numerical linear algebra

• Rational neural networks

Aim: Learn the solution operator of unknown linear PDEs                      

from observation data:

• Regularity of Green’s functions
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Approximating the solution operator

Standard approaches of PDE learning

Learn Evaluate

DeepONet

[Quanta Magazine; Lu et al, 2021] [Quanta Magazine; Li et al, 2020]

Fourier Neural Operator DeepGreen

[Gin et al., 2020]
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1. Theoretical results

2. Interpretability of the model

Main challenges of PDE learning

[Li et al, 2020]

• Dominant modes

• Symmetries

• Conservation laws

• Singularities

• Type and number of training data

• Performance guarantees

• Neural network architectures

• Noise robustness



PDE learning is data-efficient

How much training data is

needed to learn a PDE?

Related works: [B., Townsend, 2022], [B. et al., 2022], [Chen et al., 2023], [de Hoop et al., 2021], [Lu et al., 2021], [Schäfer, Owhadi, 2021], 

[Schäfer et al., 2017]

Learn the solution operator of Poisson equation Random source Solution



George Green

Green’s functions

Linear differential equation:



George Green
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George Green

Green’s functions

Poisson equation

Linear differential equation:

Helmholtz equation



Learning Green’s functions of elliptic PDEs

Elliptic PDEs in 3D of the form:

Theorem (B., Halikias, Townsend, 2023).

There is a randomized algorithm that achieves exponential convergence for learning

the Green’s function, with exceptionally high probability of success. 

The proof combines core techniques in numerical analysis and generalizes 

them to infinite dimensions: randomized SVD + hierarchical matrices + peeling.

B., Halikias, Townsend, ‘‘Elliptic PDE learning is provably data-efficient’’, PNAS, 2023.



Randomized numerical linear algebra



Randomized singular value decomposition

Best rank k approximation

Eckart-Young theorem
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Generalization of the randomized SVD

Standard Gaussian vectors Correlated Gaussian vectors

[B., Townsend, 2022]

Prior knowledge on 𝐴

Theorem (B., Townsend, 2022).

We can construct an approximation 𝐴𝑘 of 𝐴 from k+5 correlated

random input vectors such that



Hilbert-Schmidt operators

David Hilbert Erhard Schmidt

Definition:

Bounded linear operator      between Banach 

spaces with finite HS norm.



Hilbert-Schmidt operators

David Hilbert Erhard Schmidt

Matrices

Definition:

Bounded linear operator      between Banach 

spaces with finite HS norm.



Hilbert-Schmidt operators

David Hilbert Erhard Schmidt

Integral operatorsMatrices

Definition:

Bounded linear operator      between Banach 

spaces with finite HS norm.



Properties of Hilbert-Schmidt operators

Norm



Properties of Hilbert-Schmidt operators

Singular value decompositionNorm



Properties of Hilbert-Schmidt operators

Singular value decompositionNorm

Eckart-Young-Mirsky theorem

Carl Eckart Leon Mirsky

Truncating the SVD gives the best rank k 

approximation in the HS norm:



[B., Townsend, 2022]
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Theorem (B., Townsend, 2022).

We can construct an approximation 𝐺𝑘 of 𝐺 from k+5 

random input functions 𝑓 such that

[B., Townsend, 2022]



Randomized SVD for HS operators

Exact

Learned



Randomized SVD for Green’s functions
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Theorem (B., Townsend, 2022).

We can construct an approximation 𝐺𝑘 of 𝐺 from k+5 

random input functions 𝑓 such that

Green’s function

The Green’s functions are not smooth

near the diagonal.

𝜖𝑘 decays very

slowly with k

Problem:

Randomized SVD for Green’s functions



Regularity of the Green’s function



Low-rank structure

Low-rank structure on well

separated domains.
[Bebendorf, Hackbush, 2003]

X Y



Low-rank structure

Low-rank structure on well

separated domains.
[Bebendorf, Hackbush, 2003]
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Hierarchical reconstruction

Randomized SVD on each subdomain

g(x)

h(y)
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Y

Hierarchical reconstruction

Hierarchical structure

Level 2 Level 4Level 3

g(x)

h(y)

Randomized SVD on each subdomain



0

0
0

0
0

Green’s function of the Laplace 

operator:

Off-diagonal decay

0

0

0

0



Green’s functions are smooth and 

decay off the diagonal. [Grüter, Widman, 1982]
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Theorem (B., Halikias, Townsend, 2023).

There is a randomized algorithm that achieves exponential convergence for learning

the Green’s function, with exceptionally high probability of success. 

Summary of the result

Hierarchical structure

Level 2 Level 4Level 3

Randomized SVD



Summary of the result

Extension to time-dependent PDEs of the form:

B., Kim, Shi, Townsend, ‘‘Learning Green's functions associated with time-dependent partial differential equations’’, J. Mach. Learn. Res., 2022.

Theorem (B., Halikias, Townsend, 2023).

There is a randomized algorithm that achieves exponential convergence for learning

the Green’s function, with exceptionally high probability of success. 



Deep learning applications



Deep learning method

[B., Earls, Townsend, 2022]



Learning features of the PDE
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Learning features of the PDE



Learning features of the PDE

Rational neural networks have high approximation power and support 

feature extraction [B., Nakatsukasa, Townsend, 2020] 



Advection-diffusion equation

Equation:



Advection-diffusion equation

Green’s function Homogeneous solution Phase portrait

Equation:



Stokes flow in a lid-driven cavity



Stokes flow in a lid-driven cavity



1. Theory for learning Green’s functions

Conclusions
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1. Theory for learning Green’s functions

2. Generalization of the randomized SVD

3. Deep learning approach

Python package

pip install greenlearning

Conclusions
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